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MULTIPLE RESOURCE SURGICAL CASE SCHEDULING 

PROBLEM: ANT COLONY SYSTEM APPROACH 
 

Abstract. In this paper, we address the multiple-resource surgical case 

scheduling(MRSCS) problem in multi-operating theatre to minimize makespan. 

The constraints of no-wait multiple resource flexible job shop problem (FJSP) are 
considered for formulating MRSCS problem because the environment of the 

operating room is similar to the FJSP. Minimization of makespan forMRSCS is 

NP-hard combinatorial optimization problem; hence we employ the ant colony 
optimization algorithm so as to tackle this problem. These proposed approaches 

are illustrated by three test cases include small, medium, and large dataset. 

Consequently, the results of the experiments indicate that ant colony system and 

elitism ant system outperform traditional ant system since, the mean, the standard 
deviation, the best, and the worst solutions of proposed algorithms are better than 

the results of the traditional algorithm.  

Keywords: MRSCS, ant colony system, FJSP, operating room, Makespan. 
 

JEL Classification: C61 

 
1. Introduction 

During the recent decade, the healthcare industries have been growing and 

thereby, the costs of this industry are increasing. Based on statistics, healthcare 

expenditure of US will reach 19.5% of US GDP by 2017(Zhao and Li,2014). On 

the other hand, operating rooms(ORs) are considered as the engine of the hospital 
and more than 40% of costs come from various resources of surgery and ORs 

(Denton et al., 2007). Therefore, improving OR management and patient flow 
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seems essential. As a result, planning and scheduling play a crucial role in OR 

management and hence, some researchers and practitioners are attracted to study 
operating room planning. In the healthcare, a “surgical schedule” is operated by 

determining the sequence of the surgical cases as well as assigning them to the 

ORs, surgeons, nurses in order to optimize objectives such as utilization, idle time, 

overtime, etc. Operating room scheduling generally deals with strategic, tactical, 
and operational problems(Behmanesh and Zandieh, 2019). Magerlein and Martin 

(1978) defined a problem namely, “surgical process scheduling (SPS) problem” 

that is divided into two sub-problems:(i) advance scheduling; and (ii) allocation 
scheduling. The first sub-problem is a tactical problem in which a future date is 

determined for each surgical case. However, the second part is an operational 

problem in which the start time and resource allocation of the cases are determined. 
This sub-problem is called “surgical case scheduling (SCS) problem”. In literature, 

the patient is divided into the elective and non-elective case. An elective case is a 

patient that is scheduled in advance, while a non-elective case may arrive in the 

hospital randomly. 

In a surgical case processing, the patient is transported from either wards or 

ambulatory surgical unit (ASU) to the pre-holding unit (PHU). The nurse checks 
the patient’s documents while he/she is being held in the PHU. The patient 

occupies both nurse and PHU bed. Then, the patient is moved to the operating 

room and in this stage, other resources such as the nurse, OR, anesthetist, and 
surgeon are allocated to the surgical case. At the end of the surgical procedure, the 

patient is transported to the pre-anesthesia care unit (PACU) where he/she is 

recovered from residual effects of anesthesia under the care of the nurse in the 

PACU. In the third stage, the nurse and the PACU bed are allocated to the patient. 
We focus on the MRSCS problem in which pre-surgery, surgery, and post-surgery 

durations are deterministic. The resources of the first stage include of PHU beds 

and nurses. The resources of the second stage include surgeon groups, anesthetists, 
ORs, and nurses. The resources of the third stage consist of PACU beds and 

nurses. We consider the makespan as criteria to assess the addressed MRSCS 

problem. In this paper, the following contributions to the literature are offered: 

 We study the MRSCS considering multiple resources and multiple stages as 

an important topic in the operating theatre planning and then we extend a 

mixed integer linear programming(MLIP) based on concepts of FJSP to 
characterize the problem. 

 We develop ant colony system (ACS) and elitism ant system (EAS) to solve 

the large instances of the addressed problem. 

Next sections are described as follows: In section 2, several studies regarding 

the scope of our problem are reviewed. In section 3, the mathematical model for 
MRSCS is built. In section 4, we propose an algorithm for solving MRSCS.  
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In section 5, we provide illustrative examples and computational experiments. 

Lastly, we conclude and present our suggestions for future research in section 6. 

2. Background and related work 

Roshanaei et al. (2017) addressed the SCS problem considering only OR and 

surgeon as resources. The authors have applied exact algorithms to solve the SCS 

problem in their study however, using exact methods to solve NP-hard 
combinatorial problems consumes more times against to swarm or evolutionary 

approaches. Therefore, the meta-heuristics are suitable methods to tackle the SCS 

with associated savings in time. Al-Refaie et al. (2018) proposed the optimization 

models for multiple-period scheduling of the patients in ORs and intensive care 
units (ICUs). Required resources in their work include ORs and surgeons. 

However, the authors don’t consider other resources of the real case. Moreover, the 

pre-surgery stage is not considered in their model. These gaps can be filled by 
modeling the MRSCS in the three-stage operating theatre. Liu et al. (2018) studied 

the SCS problem considering OR and surgeons as resources. The authors 

constructed a two-step MIP model to maximize the utilization and minimize the 
cost of the operating theatre and to improve surgeons’ satisfaction under 

uncertainty. The strong point of their work is to use uncertain data in the model but 

this model can be extended by considering all resources of real cases in MRSCS. 

 In the literature of the surgical suite management, most researches focus only 

on the second stage. Also, the optimization of the utilization in OR has received 

more attention among other resources. There are few studies in the literature that 
takes into account both OR and surgeon utilization (Roshanaei et al., 2017, 

HashemiDoulabi et al., 2016, Fei et al., 2009, Jebali et al., 2006). To the best of our 

knowledge, there is no research in the literature that models the SCS in order to 
optimize all resources in the OR for the surgery as we research. Also, there are few 

studies that considered the upstream units (pre-operative) (Pham and Klinkert, 

2008). To the best of our knowledge, there is no literature on mathematical 

modeling of multi-stage and multiple-resource operating theatre scheduling as we 
construct. Various structures of the shops are taken into account to model and solve 

the SCS problem. Some researchers observed similarities between the operating 

room environment and the job shop environment. Pham and Klinkert (2008) 
developed novel multi-mode blocking job shop scheduling to model the SCS 

problem, however,(Xiang et al., 2015) considered generalization of job shop and 

then formulated a multiple-resource FJSP. We assume the sequence of three stages 
must be followed completely in the operating theatre, and so this assumption needs 

to the constraint that follows the rules of no-wait flow shop. In the no-wait 

situation, the orders are not allowed to wait between two successive machines.  
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To the best of our knowledge, the model of MRSCS has not been studied 

according to the constraints of no-wait FJSP. 

NP-hard problems in large-scale are tackled by meta-heuristic and swarm 

intelligence algorithms (Dekhici and Belkadi, 2015, Arun and Kumar, 2017). In 

many researches in the field of the SCS problem, some heuristic or meta-heuristic 
procedures such as genetic algorithm (Marques et al., 2014), simulated annealing 

(Beliën and Demeulemeester, 2007, Beliën et al., 2009), tabu search (Lamiri et al., 

2009, Saremi et al., 2013), and ant colony optimization (Xiang et al., 2015, 
Behmanesh et al., 2019) were developed to achieve near-optimal solutions, 

because this problem is NP-hard combinatorial optimization problem (Marques et 

al., 2014). The ACO is compatible with the MRSCS problem since this is classified 
into the constructive algorithms and these always generate a feasible solution in a 

short time,while improvement approaches may generate infeasible solutions for the 

MRSCS after applying their operators and hence more time may be needed to 

repair the infeasible solutions. Therefore, these reasons motivated us to employ 
several versions of the ACO algorithm for solving the MRSCS in this study. The 

first ACO algorithm was introduced by (Dorigo et al., 1991, Dorigo, 1992).In 

meta-heuristic approaches, a tradeoff between the exploration and the exploitation 
mechanisms is needed to make an efficient optimization algorithm(Behmanesh, 

2016). Therefore, other pheromone updating strategies are considered to improve 

the exploration of the ACO algorithm. To the best of our knowledge among the 
area of SCS in literature, no research is available that employs several versions of 

the ACO algorithm such as EAS, and ACS to solve the problem. 

3. Mathematical programming for MRSCS  

Since the MRSCS problem is an NP-hard, mathematical programming 

models cannot be considered as an effective method to solve large-scale problems, 
but these can provide a basic structure to make an effective heuristic. We develop a 

model for the MRSCS problem according to FJSP model. There are n elective 

cases, t resource type and m resource sets for each type. The patient, stage, 

resource type, and resource of each type are denoted by 𝑖, 𝑗, 𝑟, 𝑘, respectively. The 

parameters and variables of the model are described by the following symbols: 

Sets  

𝐼 Set of all the elective patients 

𝑆𝐺 Set of specializations for surgeries 

𝐼𝑠 The subset of patients based on specializations 

𝐽𝑖 Set of operations of patient𝑖 ∈ 𝐼 

𝑅 Set of all resource types 

𝑂𝑖𝑗 Patient𝑖 ∈ 𝐼 in stage 𝑗 ∈ 𝐽 

𝑅𝑖𝑗  Set of the eligible resource type for operation Oij 

𝐾𝑟𝑖𝑗
 Set of resource type 𝑟(exception of surgeon group) 𝑟 ∈ 𝑅 −
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{3}, 𝑟𝑖𝑗 ∈ 𝑅𝑖𝑗  

𝐾𝑟𝑠
 

The subset of all surgeons based on specialization 

𝑠∈ 𝑆𝐺 in resource type 𝑟 = 3 

Parameters  

𝑃𝑖𝑗𝑟𝑘 : The processing time of operation Oijif performed on resource k 

of type r 

𝑀: A large positive number 

𝑛: Total number of patients 

𝑚𝑟: Total number of resources for each resource type (8 types) 

Decision variables  

𝑆𝑇𝑖𝑗𝑟𝑘 : The start time of operation Oij by resource k of type r 

𝐸𝑇𝑖𝑗𝑟𝑘 : The end time of operation Oij by resource k of type r 

𝐸𝑇𝑖 ∶ The completion time of patient i 

𝐶𝑚𝑎𝑥: Makespan 

𝑣𝑖𝑗𝑟𝑘: 
Equals to 1 if operation Oij performed on resource k of type r, 

equals 0 otherwise 

𝑧𝑖𝑗ℎ𝑔𝑟𝑘 : 
Equals to 1 if operation Oij precedes operation Ohg on resource 

k of type r, equals 0 otherwise 

𝑔𝑖𝑗𝑟𝑘 : 
Equals to 1 if operation Oij performed by surgeon k of special 

group 𝑟 , equals 0 otherwise. This variable is used for all 
involved multiple-resources in the process of the surgery. 

A general model of MILP is constructed for the MRSCS problem. In the following 

model, Equation (1) states minimum makespan. Constraint(2) reflects makespan 
according to the completion time of the patients. Equation (3)determines the end 

times of the patients at the end of the last stage.  

min 𝐶𝑚𝑎𝑥  (1) 

𝑠. 𝑡.  

𝐸𝑇𝑖 ≤ 𝐶𝑚𝑎𝑥        ∀ 𝑖 ∈ 𝐼 (2) 

𝐸𝑇𝑖 ≥ ∑ 𝐸𝑇𝑖𝑗𝑟𝑘

𝑘∈𝐾𝑟𝑖𝑗

∀ 𝑖 ∈ 𝐼, 𝑗 = 3, 𝑟 = 8 
(3) 

Constraints (4) and (5) guarantee that the difference between the start time and 

the end time of the operation for the patients during all stages (only for surgeons in 
the second stage) is equal to the processing time of these stages on eligible 

resources. Constraints (6) and (7) make sure same requirements of equations (4) 

and (5) but for other involved resources in the second stage(resource types #4-#6).  

𝑆𝑇𝑖𝑗𝑟𝑘 + 𝐸𝑇𝑖𝑗𝑟𝑘 ≤ 𝑀𝑣𝑖𝑗𝑟𝑘∀ 𝑖 ∈ 𝐼 /𝐼𝑠 , 𝑗 ∈ {1,2,3}, 𝑟 ∈ 𝑅𝑖𝑗{1,2,3,7,8}, 𝑘 ∈ 𝐾𝑟𝑖𝑗
 (4) 

𝑆𝑇𝑖𝑗𝑟𝑘 + 𝑃𝑖𝑗𝑟𝑘 −  𝑀(1 − 𝑣𝑖𝑗𝑟𝑘) ≤ 𝐸𝑇𝑖𝑗𝑟𝑘∀ 𝑖 ∈ 𝐼 /𝐼𝑠 , 𝑗 ∈ {1,2,3}, 𝑟

∈ 𝑅𝑖𝑗{1,2,3,7,8}, 𝑘 ∈ 𝐾𝑟𝑖𝑗
 

(5) 
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𝑆𝑇𝑖𝑗𝑟𝑘 + 𝐸𝑇𝑖𝑗𝑟𝑘 ≤ 𝑀𝑣𝑖𝑗𝑟𝑘        ∀ 𝑖 ∈ 𝐼, 𝑗 = 2, 𝑟 ∈ 𝑅𝑖𝑗{4,5,6}, 𝑘 ∈ 𝐾𝑟𝑖𝑗
 (6) 

𝑆𝑇𝑖𝑗𝑟𝑘 + ∑ 𝑃𝑖𝑗𝑟𝑘𝑔𝑖𝑗𝑟𝑘

𝑘∈𝐾𝑟𝑠

−  𝑀(1 − 𝑣𝑖𝑗𝑟𝑘) ≤ 𝐸𝑇𝑖𝑗𝑟𝑘        ∀ 𝑖 ∈ 𝐼, 𝑗 = 2, 𝑟

∈ 𝑅𝑖𝑗{4,5,6}, 𝑘 ∈ 𝐾𝑟𝑖𝑗
 

(7) 

Constraints (8) and (9) specify that two different operations of Oij and Ohg 
cannot be processed at the same time on any resource in set Rij∩Rhg. Equation (10) 

ensures that jth operation of the patient must be exactly started after the end time of 

(j-1)th of the operation of the same patient.  

𝐸𝑇ℎ𝑔𝑟𝑘  − 𝑀𝑧𝑖𝑗ℎ𝑔𝑟𝑘 ≤ 𝑆𝑇𝑖𝑗𝑟𝑘        ∀ 𝑖, ℎ ∈ 𝐼 /𝐼𝑠 , 𝑖 ≪ ℎ, 𝑗, 𝑔 ∈ 𝐽, 𝑟 ∈ 𝑅𝑖𝑗 ∩ 𝑅ℎ𝑔 , 𝑘

∈ 𝐾𝑟𝑖𝑗
∩ 𝐾𝑟ℎ𝑔

 
(8) 

𝐸𝑇𝑖𝑗𝑟𝑘  −  𝑀(1 − 𝑧𝑖𝑗ℎ𝑔𝑟𝑘) ≤ 𝑆𝑇ℎ𝑔𝑟𝑘        ∀ 𝑖, ℎ ∈ 𝐼 /𝐼𝑠 , 𝑖 ≪ ℎ, 𝑗, 𝑔 ∈ 𝐽, 𝑟

∈ 𝑅𝑖𝑗 ∩ 𝑅ℎ𝑔 , 𝑘 ∈ 𝐾𝑟𝑖𝑗
∩ 𝐾𝑟ℎ𝑔

 
(9) 

∑ 𝑆𝑇𝑖𝑗𝑟𝑘

𝑘∈𝐾𝑟𝑖𝑗

= ∑ 𝐸𝑇𝑖(𝑗−1)𝑟𝑘

𝑘∈𝐾𝑟𝑖(𝑗−1)

∀ 𝑖 ∈ 𝐼 /𝐼𝑠 , 𝑗 ∈ {2,3}, 𝑟 ∈ 𝑅𝑖𝑗  
(10) 

Constraint (11) and (12) make sure that all required resources for each stage 

must have the same start and end time, respectively.  

∑ 𝑆𝑇𝑖𝑗𝑟𝑘

𝑘∈𝐾𝑟𝑖𝑗

= ∑ 𝑆𝑇𝑖𝑗𝑟′𝑘′

 𝑘′∈𝐾𝑟𝑖𝑗

∀ 𝑖 ∈ 𝐼 /𝐼𝑠 , 𝑗 ∈ 𝐽, 𝑟, 𝑟′ ∈ 𝑅𝑖𝑗 
(11) 

∑ 𝐸𝑇𝑖𝑗𝑟𝑘

𝑘∈𝐾𝑟𝑖𝑗

= ∑ 𝐸𝑇𝑖𝑗𝑟′𝑘′

 𝑘′∈𝐾𝑟𝑖𝑗

∀ 𝑖 ∈ 𝐼 /𝐼𝑠 , 𝑗 ∈ 𝐽, 𝑟, 𝑟′ ∈ 𝑅𝑖𝑗  
(12) 

Equation (13) enforces that one and only one resource from each resource type 
must be assigned to an operation of the patient. Finally, constraint (14) demands 

that one and only one surgeon from each group can operate. Constraints (15-20) 

denote positive and binary decision variables. 

∑ 𝑣𝑖𝑗𝑟𝑘

 𝑘∈𝐾𝑟𝑖𝑗

= 1      ∀ 𝑖 ∈ 𝐼 /𝐼𝑠 , 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅𝑖𝑗  
(13) 

∑ 𝑔𝑖𝑗𝑟𝑘

𝑘∈𝐾𝑟𝑠

= 1      ∀ 𝑖 ∈ 𝐼𝑠 , 𝑗 = 2, 𝑟 = 3 (14) 

𝑆𝑇𝑖𝑗𝑟𝑘 , 𝐸𝑇𝑖𝑗𝑟𝑘 ≥ 0           ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅𝑖𝑗 , 𝑘 ∈ 𝐾𝑟𝑖𝑗
 (15) 

𝐸𝑇𝑖 ≥ 0     ∀ 𝑖 ∈ 𝐼 (16) 

𝐶𝑚𝑎𝑥 ≥ 0       (17) 

𝑣𝑖𝑗𝑟𝑘 ∈ {0,1}∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅𝑖𝑗 , 𝑘 ∈ 𝐾𝑟𝑖𝑗
 (18) 

𝑔𝑖𝑗𝑟𝑘 ∈ {0,1}∀ 𝑖 ∈ 𝐼𝑠 , 𝑗 = 2, 𝑟 = 3, 𝑘 ∈ 𝐾𝑟𝑠
 (19) 

𝑧𝑖𝑗ℎ𝑔𝑟𝑘 ∈ {0,1}∀ 𝑖, ℎ ∈ 𝐼 /𝐼𝑠 , 𝑖 ≪ ℎ, 𝑗, 𝑔 ∈ 𝐽, 𝑟 ∈ 𝑅𝑖𝑗 ∩ 𝑅ℎ𝑔 , 𝑘 ∈ 𝐾𝑟𝑖𝑗
∩ 𝐾𝑟ℎ𝑔

 (20) 
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4. Ant colony optimization (ACO) as a method 

A bi-level ACS/EAS algorithm is proposed that in its first level, surgical 

cases are taken into account as cities of the tour and thereby, the sequence of the 

cases is determined in this level. Then in the second level, required multiple-
resources of every stage are assigned to patients. Therefore, two graphs are 

generated by the ACS/EAS algorithm that sequence of patients are determined in 

the first (outer) graph and resource allocation is done inside the second (inner) 
graph. The pseudo code of the algorithm is presented as follow. 

Algorithm1. Bi-level ACS 

1. Input: an instance MRSCS of a combinatorial problem Pm 

2. Initialize Pheromone Values and other parameters (it,m), 𝛽, 𝛼, 𝜌 

3. While stop criteria not met (i<it) do 

4.     Put m ants on a random node (surgical case) 

5.      Construct an ant solution with the resources start time (0) 

6.      While all ant shave not been assigned to nodes,𝑘 < 𝑚do 

7.            Initialize tabu:= 𝜑; surgical cases (SC):= 𝐼 

8.           Construct an ant solution by visiting a node i 
            in the outer graph according to the transition rule Eqs(26,27,30) 

9.           𝑡𝑎𝑏𝑢 = 𝑡𝑎𝑏𝑢 ∪ {𝐼𝑖} and 𝐼 = 𝐼\{𝐼𝑖} 

10.          Determine start time (ST) and end time (ET) of each SC according to the 

no-wait 
11.          Determine available resources for surgical case 

12.         Ant enters into the inner graph and constructs available resource set G 

13.          Construct a resource allocation for ant solution 
14.           For each resource type t do 

15.              Construct an ant solution by visiting a node tm in the inner graph  

                  according to the transition rule Eqs(28,29) 

16.             Local update inner pheromone trial based on Eq(31) 
17.          End for 

18.           Update time window of occupied resources 

19.       End while 
20.    Calculate single objective (makespan) for an ant solution 

21.    Compare iteration based best ant solution, record its tabu as the global best 

solution 
22.    Global update in both outer and inner pheromone trial based on Eqs(21-25) 

23. End while 

24. End while 

25. Plot related graphs (Gantt chart, convergence) 

26. Return the best solution found 
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According to the pseudo code, the construction of the outer graph is 

commenced by putting m ants on surgical cases randomly and then initial 
pheromone is provided. After that, multiple resources are allocated to the patient 

that chosen by an ant and hence, the inner graph is made by choosing each resource 

from each type of resource. Then, the time window of selected resources, as well 

as local pheromone, are updated and ant exits from the inner graph and goes to the 
outer graph in order to visit other surgical cases for probable choosing. These 

stages are repeated until an ant implement outer graph so that all surgical cases are 

sequenced and required resources are assigned to all patients. Moreover, this loop 
must be repeated for (m) ants. For example, ant #1 goes to visit surgical case #1 

and then goes to visit required resources like bed #2 from PHU as resource type, 

anesthetist #5 from anesthetist group as resource type, etc. Then, the ant goes to 
visit another surgical case according to transition rules, after assigning the 

resources to the case #1 and this process is repeated until scheduling all patients for 

all ants. Finally, makespan obtained by all ants are compared and the best is 

recorded and the pheromones are updated for the next iteration of the algorithm. 
The algorithm is iterated until stopping conditions i.e. maximum iteration. 

Pheromone updating procedure related to proposed algorithms and transition 
rules are described in this section. EAS was introduced by (Dorigo et al., 1996), 

and ACS was introduced by (Dorigo and Gambardella, 1997).Rules of ACS are 

formulated based on the following equations. The Strategy of pheromone updating 
in the outer graph is according to the following equation: 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗
𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑒𝑠𝑡

                                                   (21) 

∆𝜏𝑖𝑗
𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑒𝑠𝑡

= {
𝑄

𝐶𝑚𝑎𝑥
𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑔𝑜𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ (𝑖, 𝑗) 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

0,                                                                                         𝑜. 𝑤.
(22) 

and ∆𝜏𝑖𝑗
𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑒𝑠𝑡

 is increasing the value of the pheromone from case i to case j in 

the iteration of the best route and 𝐶𝑚𝑎𝑥  is makespan of the best agent. And in local 

update or exploration strategy, the ant #k decreases pheromone when it adds a 
component cij(the route of patient i to patient j) to its partial solution in accordance 

with the following: 

𝑠𝑘 ∪ {𝑐𝑖𝑗} ⇒ 𝜏𝑖𝑗(𝑡) = (1 − ℵ). 𝜏𝑖𝑗(𝑡) +  ℵ. 𝜏0    (23) 

where, parameter ℵ controls the exploration factor, and initial pheromone (small 

constant value) is notated by 𝜏0.Besides, the strategy of the pheromone updating in 

the inner graph is according to the following equation: 

𝑖𝑛(𝜏𝑡𝑚
𝑖 (𝑡 + 1)) = (1 − 𝜌). 𝑖𝑛(𝜏𝑡𝑚

𝑖 (𝑡)) + ∆𝑖𝑛(𝜏𝑡𝑚
𝑖𝑏𝑒𝑠𝑡)                                     (24) 
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∆𝑖𝑛(𝜏𝑡𝑚
𝑖𝑏𝑒𝑠𝑡) =

{
𝑄

𝐶𝑚𝑎𝑥
𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑔𝑜𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑠𝑢𝑟𝑔𝑒𝑟𝑦( 𝑖) 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑟𝑎𝑝ℎ (𝑡, 𝑚)

0,                                                                                         𝑜. 𝑤.
(25) 

and ∆𝑖𝑛(𝜏𝑡𝑚
𝑖𝑏𝑒𝑠𝑡) is increasing the value of the pheromone for case i on resource m 

from type t in the iteration of the best route and 𝐶𝑚𝑎𝑥  is makespan of the best 

agent. Then, transition rules in the graphs are shown as the following formulations. 

In the outer graph, the probability of the choice of case j after case i is shown as 
follows: 

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]
𝛼

.[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑙(𝑡)]𝛼.[𝜂𝑖𝑙]𝛽
𝑙∈𝐼𝑖

𝑘

        𝑖𝑓 𝑗 ∈ 𝐼𝑖
𝑘                       (26) 

where, the pheromone value in the current iteration for case i to j is denoted by 

𝜏𝑖𝑗(𝑡), and the pheromone, and heuristic factors are denoted by 𝛼, 𝛽, and also 𝜂𝑖𝑗 

denotes the heuristic information of problem for the case i to j that is shown 

according to the following equation: 

𝜂𝑖𝑗 = (𝑇𝑗1 + 𝑇𝑗3 + max (𝑇𝑗2
𝑆𝐺𝑚))/(𝑇𝑗1 + 𝑇𝑗3 + max(𝑇𝑗2

𝑆𝐺𝑚) + 𝐴)                   (27) 

where, 𝑇𝑗1, 𝑇𝑗2
𝑆𝐺𝑚 , 𝑇𝑗3  are processing time pre-surgery, surgery, and post-surgery, 

also parameter A is a constant value. In the inner graph, the probability of the 

choice of resource m from type t is shown as follows: 

𝑃𝑡𝑚
𝑘𝑖 (𝑡) =

[𝑖𝑛(𝜏𝑡𝑚
𝑖 (𝑡)).𝑖𝑛(𝜆𝑚)]

𝛼
.[𝑖𝑛(𝜂𝑡𝑚)]𝛽

∑ [𝑖𝑛(𝜏𝑡𝑔
𝑖 (𝑡)).𝑖𝑛(𝜆𝑔)]

𝛼
.[𝑖𝑛(𝜂𝑡𝑔)]

𝛽

𝑔∈𝐺𝑖
𝑘

        𝑖𝑓 𝑗 ∈ 𝐺𝑖
𝑘                     (28) 

where, 𝑖𝑛(𝜏𝑡𝑚
𝑖 (𝑡)) is pheromone value in the current iteration for resource m from 

type t, and the heuristic information for resource m from type t is denoted by 

𝑖𝑛(𝜂𝑡𝑚)that is shown as follows: 

𝑖𝑛(𝜂𝑡𝑚) = 𝐵/(𝐸𝑆𝑖𝑙
𝑡𝑚 + 𝑇𝑖𝑙

𝑡𝑚)          (29) 

where, 𝐸𝑆𝑖𝑙
𝑡𝑚 is the earliest time of resource m from type t for case i in stage l and 

𝑇𝑖𝑙
𝑡𝑚is operating time of case i in stage l when resource m from type t is applied. 

Also, parameter B is a constant value. ACS works according to pseudo-random 

proportional choice rule using a controller parameter namely qm0. Agent #k 
chooses patient j after patient i with probability less than or equal to qm0 based on 

the following equation (greedy walking): 

𝑗 = arg max {[𝜏𝑖𝑙(𝑡)]𝛼 . [𝜂𝑖𝑙]𝛽}       𝑖𝑓 𝑙 ∈ 𝐼𝑖
𝑘         (30) 
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And on the other hand, agent #k chooses patient j after patient i with probability 

greater than qm0 based on the probabilistic choice rule of ant system (equation 
26).Also, there is a new strategy of the pheromone updating that is denoted by 

𝑖𝑛(𝜆𝑡𝑚). This strategy is very effective for resource utilization and is described in 

the below equation: 

𝑖𝑛(𝜆𝑡𝑚) = 𝑖𝑛(𝜆𝑡𝑚) − 𝑞0                                  (31) 

where, q0 states decremented pheromone value. It must be noted that all 

formulations exception of equations (23,30) are considered for EAS algorithm. 

5. Results and statistical analysis 

5.1. Examples and data 

To assess the proposed algorithms, we considered three cases (small, 

medium, and large) those are different in operating time, the number of patients, 

and assigned resources. Each case consists of three various examples. Cases 
category and their specifications are shown in Table 1. Surgeries are classified into 

five types based on their duration (Table 2). The surgery’s duration is according to 

simulation model constructed by (Xiang et al., 2015) and each problem was 
generated based on different durations of surgery type. 

Table 1.Surgical cases and the resources 

P 
Surgical 

case 

PHU 

bed 
Nurse Srg ORs 

PACU 

bed 
Anesthesia 

Surgery type 

(S:M:L:EL:S) 

1 8 1 5 5 2 2 5 2:4:1:1:0 

2:6:1:1:0 2 10 2 8 6 4 4 6 
3 10 2 8 6 4 4 6 2:5:2:1:0 
1 15 3 10 6 4 3 8 3:9:2:1:0 
2 20 3 15 10 5 4 8 4:12:3:1:0 
3 20 3 15 10 5 4 8 4:10:3:3:0 
1 30 4 19 10 6 5 9 7:16:3:2:2 
2 30 4 22 12 6 5 11 5:15:3:4:3 
3 30 5 22 12 6 6 12 3:15:3:4:5 

As it is observed, three problems of each case are different in size of surgeries 

(column 2), size of resources (column 3-8), and surgery type structure (column 9). 

Table 2. The classification of the surgeries 

Desc 
Pre-

surgery 

Surgery Case Post-

surgery S M L EL Special 

Duration R.N R.N R.N R.N R.N R.N R.N 

(min) (8,2) (33,15) (86,17) (153,17) (213,17) (316,62) (28,17) 
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5.2. Parameter setting of proposed algorithms 

Various parameters in ACS and EAS algorithms are effective in their 

performance especially solution quality and computational time. For instance, 

some parameters are considered in proposed algorithms according to Table 3.  

Table 3. Parameters for algorithms 

Parameter Description Parameter Description 

(m, Max-It) 
(The No. of ants, 

iterations) 
β heuristic factor 

ρ evaporate rate q0 decremented pheromone 

α pheromone factor λ0 
resource-related 

pheromone 

We designed experiments according to the Taguchi design of experiment in order 

to set parameters for algorithms on test cases. Therefore, three factors namely, λ0, 
α, and β were set to three levels as shown in Table 4. In the first place, the 

parameter setting was done by considering the signal to noise ratio (S/N) to build a 

robust algorithm, then the mean of the makespan was taken to set parameters. 

Table 4.Factors and their levels for optimizing ACS 

Factor Level 1 Level 2 Level 3 

λ0 (Factor 

A) 

1 5 9 

α (Factor B) 0.1 0.9 3 

β (Factor C) 0.1 2 9 

The effect of these factors on S/N and mean of makespan is shown in Figure 1.As 

it is shown, the best set of α, β, and λ0are determined in mediate level e.g. 0.9 for α 
and 2 for β and 5 for λ0in order to build the robust and efficient algorithm. 

  
(a) signal to noise ratios (b) average of makespan 

Figure 1.Main effect plot of three factors (λ0, α, and β) 
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MATLAB and GAMS were applied for coding the algorithms. For this aim, a 

computer with Core (TM) Duo CPU T2450, 2.00 GHz, and 1 GB of RAM was 
used. Final setting parameters of each algorithm for three cases are displayed in 

Table 5.These experiments were done for all algorithms on all test cases. 

      Table 5.Final setting parameters for all algorithms 

Case no. Algorithms (max-it, m) q0 λ0 α β ρ 

1 

ACS 60,50 0.4 5 0.9 2 0.2 

EAS 60,50 0.4 5 0.9 5 0.2 

AS 60,50 0.1 4 0.9 5 0.1 

2 

ACS 80,50 0.4 5 0.9 2 0.2 

EAS 80,50 0.4 5 0.9 5 0.2 

AS 80,50 0.1 4 0.9 5 0.1 

3 

ACS 100,60 45 5 0.9 2 0.2 

EAS 100,60 47 5 0.9 5 0.2 

AS 100,60 0.1 4 0.9 5 0.1 

Also, Figure 2 displays the convergence value of three algorithms (best solution) 

versus different populations from 10 ants to 50 ants. As it is indicated, more 

population impacts on the performance of algorithms to achieve a better solution. 

 

Figure2. Convergence diagram with different populations of the ant colony 

5.3. Comparison between algorithms 

Firstly, we ran three algorithms and MILP model on a very small case as 

presented in Table 6along with small data of Table 1to validate our approach. All 
algorithms were repeated 30 times and then the mean of the makespan found by 

ACS and EAS was compared to results of MILP. Algorithms are validated in 

comparison with MILP model. On the other hand, global solutions found by 
proposed algorithms outperform basic algorithm as shown in Table 7.  

 

 

400

420

440

460

480

10 20 30 40 50

AS

ASC

EAS



 
 
 
 
 
 
Multiple Resource Surgical Case Scheduling Problem: Ant Colony System 
Approach 

_________________________________________________________________ 

 

263 

 

DOI: 10.24818/18423264/54.1.20.16 
 
 

 

Table 6. Test cases for comparing MILP and ACO algorithms 

P 
Surgical 

case 

PHU 

bed 
Nurse Srg ORs 

PACU 

bed 
Anesthesia 

Surgery type 

(S:M:L:EL:S) 

1 3 2 6 6 2 2 2 0:2:1:0:0 

2 5 1 9 6 6 2 6 2:2:1:0:0 

 

Table 7.The validation of the AS, ACS, and EAS algorithms  

Sample GAMS AS ACS EAS (
𝑨𝑪𝑺−𝑮𝑨𝑴𝑺

𝑮𝑨𝑴𝑺
%) 

CT* 

(ACS/GAMS) 

1(very small) 181 184.20 181.00 181.00 0.00% 100% 

2(very small) 234 238.80 234.00 234.00 0.00% 6.66% 

3(small) 402 427.56 409.63 409.66 1.90% 3.5% 

4(small) 253 279.80 265.13 267.10 4.79% 2.2% 

5(small) 252 281.26 264.80 270.70 5.08% 2.2% 

6(medium) --- 362.00 348.60 353.83 --- --- 

*. Computational Time 

All algorithms were repeated 30 times for each instance in order to compare three 

algorithms. RPD index was applied to homogenize all data because obtained 
makespan values of problems are heterogeneous. RPD value of each makespan is 

obtained according to the following equation: 

 

𝑅𝑃𝐷𝑖𝑗 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗−𝑚𝑖𝑛𝑗(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗)

𝑚𝑖𝑛𝑗(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗)
                                            (32) 

where the index of the problem is notated by i and j is introduced as the index of 

the algorithm. In order to compare three algorithms for solving large-scale 
instances, we ran these using data of Table 1.The results of the normalized 

experiments based on RPD are indicated in Table 8 and the ANOVA test was 

applied to verify whether convergence values of algorithms are different 
significantly. The result of the ANOVA for comparison of three algorithms is 

presented in Table 9, and it is indicatedthatconvergence valuesof algorithms are 

different.  

Table 8. Results of RPD for algorithms 

Case.No. 
Mean of RPD (Make span) 

ACS EAS AS 

Small-P1 0.003355 0.003432 0.047281 

Small-P2 0.003149 0.010643 0.058774 

Small-P3 0.001129 0.023555 0.063493 
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Medium-P1 0.002012 0.017094 0.040626 

Medium -P2 0.008583 0.009560 0.050891 

Medium -P3 0.007000 0.004822 0.046769 

Large-P1 0.008727 0.001460 0.036642 

Large -P2 0.005579 0.002776 0.038574 

Large -P3 0.003529 0.002240 0.039452 

MEAN 0.004785 0.008398 0.046945 

 

Table 9.ANOVA test for comparison the ACO algorithms 

Hypothesis: 
H0: 𝜇𝐴𝑆 = 𝜇𝐴𝐶𝑆 = 𝜇𝐸𝐴𝑆 

H1: Otherwise 

Source of 

variation 
DF SS MS F P-value 

Algorithm 2 0.294872 0.147436 839.982 0.000 

Error 807 0.141647 0.000176 
  

Total 809 0.436519 
   

Result: Reject H0 
    

 
Furthermore, both Scheffe’s comparison and Tukey’s comparison were applied in 

ANOVA to determine the relationship between algorithms for finding the 

algorithm with a qualified and efficient optimal solution. The results of the 
comparison tests are presented in Table 10 and as it is shown, ACS and EAS 

outperform the AS significantly and moreover, the ACS outperforms the EAS. As 

a consequence, we infer that our proposed approaches are promising meta-heuristic 
algorithms to provide good solutions for solving MRSCS problem because of their 

better exploration in comparison with AS. 
 

Table 10. Comparison Tests for three algorithms in the convergence value 

Alg. (A) Alg. (B) Mean Difference (A-B) 
P-value 

Result 
Scheffe Tukey 

ACS EAS -.00361318757* 0.007 0.005 ACS < EAS 

ACS AS -.04215989027* 0.000 0.000 ACS < AS 

EAS AS -.03854670269* 0.000 0.000 EAS < AS 

Result: 𝝁𝑨𝑪𝑺 < 𝝁𝑬𝑨𝑺 < 𝝁𝑨𝑺 

 

*. The mean difference is significant at the 0.05 level 
 

Besides, Figure 3 presents median and inter-quartile range (IQR) values of the 
algorithms on the test problems. The size of each rectangle displays the IQR. The 

short line at the end of each rectangle indicates the maximum and minimum values 

and the median is represented by the short line in each rectangle. As it is indicated, 
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ACS occupies the lowest position in the graph as compared to the EAS and AS 

while AS occupies the highest position. On the other hand, the ACS rectangle 
occupies the smallest area, and this indicates that the ACS has the smallest degree 

of variance. 

ASEASACS
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Figure3.Box plot of the mean of RPD (makespan) value on all test 

problems to compare the AS, ACS, and EAS 

The average, standard deviation, the best and the worst solution by running 

algorithms on each test problem in the dataset are presented in Table 11.In each 

test case, the results of the ACS and EAS are more efficient than those of AS.  

 

Table 11.Comparison between AS, ACS, and EAS 

Cases Problems Algorithms Average St.Dev Min Max 

Small P1 ACS 409.6333 2.008316 407 415 

EAS 409.6667 2.309401 407 415 

AS 427.5667 4.492778 420 438 

P2 ACS 265.1333 4.174911 259 277 

EAS 267.1 4.27785 260 276 

AS 279.8 3.845284 272 286 

P3 ACS 264.8 3.336321 259 273 

EAS 270.7 3.724569 262 276 

AS 281.2667 4.184811 274 290 

Medium P1 ACS 348.6 3.747183 340 358 

EAS 353.8333 5.47775 344 363 

AS 362 5.30452 350 372 

P2 ACS 366.6333 4.64226 356 379 

EAS 367 5.489802 356 377 

AS 382 3.859605 374 389 
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P3 ACS 433.4333 3.94517 422 439 

EAS 432.5 4.297152 424 442 

AS 450.5333 5.624658 440 461 

Large P1 ACS 529.6333 3.189242 524 535 

EAS 525.8333 3.705386 518 533 

AS 544.3 6.798326 531 558 

P2 ACS 628.1333 3.104317 620 633 

EAS 626.4 4.79655 615 634 

AS 648.7333 6.180801 635 665 

P3 ACS 732.8333 4.705707 722 744 

EAS 731.9 4.929503 722 742 

AS 759.0333 8.965387 746 778 

 

As it is indicated, both proposed algorithms i.e. ACS and EAS outperform 

traditional AS according to the results of the average, standard deviation, best, and 
worst. Although the ACS outperforms the EAS significantly based RPD, we can 

discuss each test problem, separately. For instance, in both small and medium test 

case problems, the average of the solution obtained by ACS is better than those of 

EAS whereas, results of EAS are better than those of ACS in large test problems. 
Besides, like these results are seen in the best solution obtained so that ACS 

obtains the better solution for small and medium tests while the EAS obtains the 

efficient solutions for large tests. On the other hand, it is observed that range of 
solutions obtained by EAS is larger than those of ACS according to standard 

deviation and therefore, applying the ACS in all cases is more robust than EAS. As 

a consequence, we can point out that ACS outperforms the EAS exactly and 
accurately, although the EAS presents solutions better than ACS sometimes in 

large cases. 

6. Conclusion 

In this paper, we proposed a new approach so as to tackle MRSCS 

problem. In this paper, new meta-heuristic approaches with high robustness and 
high quality are introduced to solve the MRSCS problem. Our methodology is 

based on ACO algorithms so that we developed bi-level ACS and EAS. To 

illustrate our proposed algorithms, we generated three cases with different sizes. In 
accordance with results and discussions, it can be concluded that both ACS and 

EAS outperform traditional AS. Additionally, the ACS outperforms the EAS and 

therefore our proposed bi-level ACS obtains solutions more exact and accurate 

than EAS although the EAS gives us the better mean of the makespan on large test 
problems in comparison to the ACS. At last, we suggest some directions for 

extending the ACO for future research on this topic. A developed max-min ant 

system (MMAS) can be a good method to improve the proposed algorithms of this 
paper. Also, emergency cases can be considered in MRSCS problem and a new 
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algorithm can be developed to tack lean online SCS in the real world. On the other 

hand, the development of the ACO algorithm for multi-objective MRSCS problem 
can be considered as novel research. 
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